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A note on head-sea diffraction by a slender body 
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Department of Civil Engineering, IF", SBo Paulo, Brazil 

(Received 19 April 1983 and in revised form 22 May 1984) 

In  studying head-sea diffraction by a slender body, Haren & Mei (1981) found, at 
a special frequency, a singularity inherent in the cross-section (inner) mathematical 
problem. In  this note this singularity is interpreted, and it is shown that the head-sea 
problem is similar to the problem of an acoustic duct being excited at one end by 
a pressure field. As a consequence, the head sea is not always refracted away from 
the body, since the solution remains oscillatory for frequencies above that special 
frequency. 

1. Introduction 
Several different researchers, using different methods, have established that a head 

sea is refracted away by a long ship, leaving a comparatively wave-free zone near 
the body (see e.g. Paltinsen 1971 ; Urselll977; Haren & Mei 1981). In the latter paper 
it was found numerically that the cross-section (inner) problem is singular at some 
special frequency. Later Yue & Mei (1981) showed that this singularity is inherent 
in the inner problem and that it is closely related to the non-existence at this 
frequency of the solution derived by Ursell (1968). Owing to this fact, this special 
frequency will here be called 'Ursell's frequency'. 

In  this note this singularity is interpreted, and it is shown that at Ursell's frequency 
the homogeneous cross-section problem has a non-trivial solution. The situation here 
is similar to the acoustic-duct problem and its cut-off frequencies. At these special 
values, the homogeneous cross-section problem has a non-trivial solution, and, as a 
consequence, the wave propagated along the duct has a definitive change of 
behaviour. In short, for frequencies below the cut-off frequency the wave mode goes 
to zero as x+m, while for frequencies above cut-off the wave mode remains 
oscillatory. If a velocity field is prescribed at the end of the acoustic duct, the 
transition is abrupt (resonance). If, instead, a pressure field is given, the transition 
is smooth. The same sort of behaviour is expected at Ursell's frequency. As a matter 
of fact, it is shown here that the head-sea problem is similar to that of the acoustic 
duct when pressure is imposed at one end. 

In what follows, the cross-section problem will be analysed first for the shallow-water 
limit and then for the arbitrary-water-depth case. There is an important reason for 
doing this. The solution of the shallow-water equation can be determined analytically, 
and the features of the cross-section problem can be disclosed very easily. It can be 
shown that the same sort of results can also be derived for the arbitrary-water- 
depth cam, but then the demonstration is much more complex. In  this paper the 
shallow-water equation is invoked to motivate these results, and only a sketchy view 
of the arbitrary-water-depth case, with discussion of pertinent results, will be given. 
Details can be found in Aranha (1982). 

Once the cross-section (inner) solution is obtained and analysed, the parabolic 
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approximation will be used as an outer solution. The matching between the two 
produces an Abel integral equation, which, for a constant cross-section, has an 
explicit solution, as given by Mei & Tuck (1980). This solution will be analysed, and 
the change of behaviour at Ursell’s frequency will be demonstrated. 

2. Cross-section (inner) problem 
The geometric parameters are defined in figure 1. In this work specific reference 

will be made to the rectangular box indicated, although the conclusions are general. 
In figure 1 , 6  exceeds b, but is otherwise arbitrary. The equations for shallow water 
depend on b, and 6 will take its place for arbitrary water depth. 

The incident wave is given by #,(x,y, z )  = AIeiKox cosh Ko(z+h), where A, is the 
wave amplitude and KO the wavenumber. The total wave is defined as 

#(x, y, 2) = #,(x, y, 2) + $&, y, 2) (1) 

In the cross-section (inner) problem the diffracted potential $(x, y, z )  is independent 
of x. It follows then that it satisfies the set of equations 

$uu+$zz-q$ = 0 for -h < z < 0, Pa) 

(2b)  

$ - , = O  o n % = - h ,  (2 c) 

$z=-$ 4 onz=O,  where 4i --KotanhKoh, - 
9 9 

_ -  all. - -- a (coshK,(z+h)) on body B, 
an an 

$+[A$+KoU$(~y~-6)]coshKo(z+h) wheny+foo. (2 e) 

Condition (2e) is a little different from the one used by Ursell (1968). It is the most 
general one, and so is appropriate for matching with the outer solution. Equations 
(2a-e) are valid for arbitrary water depth, and will be particularized next for the 
shallow-water case. 

2.1. Shallow water 

The purpose here is to derive, in an easy way, the results that are valid for arbitrary 
depth. In this subsection the cross-section will be assumed to be rectangular, as 
indicated in figure 1, and the water to be shallow (KO h 4 1). It follows that 

oi/g = @h[l+O(Koh)2], +,(x,y,z) = A,eiKo2[1+O(Koh)2] 

and, if $o(y) = cr $(y,z)dz then, with an error factor of the form 1+O(Koh)2, ( 2 )  
become (see Yue & Mei 1981) 

$l-g$o = A,% for ( y (  < b, (3a )  

($$)” = 0 for y >< f b ,  ( 3 b )  

~ $ + A $ + K , U $ ( I y I - b )  as y++oo, (34 

where 9” = ykVg. Equation (3a)  plays the role of the boundary condition on the body 
surface, and the total wave #(x, y) = eiKo5[AI + $,(y)] satisfies the homogeneous 
boundary condition +yu-q# = 0 ( I yI < b ) .  
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1 L 

Longitudinal section Cross-section 

FIQURE 1. Notation. 

The solution of (3) must satisfy the continuity of pressure and flux at I yI = b 
(@o( f b )  = @of ( k b)  ; (h- D )  @,, f b )  = h$; J f b ) )  and is given by 

@o(y) =-AI+CcoshK,y+SsinhK,y ( 1 ~ 1  < b), 

@,(!I) = [Aof+KoU;(IYI--b)l ( I v l  > b ) ,  

where Aof and Uof are related by means of 

and 
1 h - D  

a,=-- (cothK,b+tanhK, b), 
2 h  

1 h - D  
a =-- ( - coth KO b + tanh KO b)!  

' 2 h  

The matrix in (5 )  is symmetric, positive-definite and it has two positive 

(7) 

( 8 4  

A, = a,+a, = - tanh KO b,  

A,  = a,-a2 = - coth KO b. 

If the cross-section is symmetric (as it is in this case) the physical solution must also 
be. Taking S = 0, A, = A$, U, = Uof in (4) and (5 ) ,  the following result is obtained: 

$-O(Y) =-A~+CcoshKoy ( Iy l  < b) ,  

@o(Y) = (Ao-Wob) UO,+K, Uolvl ( I v l>  b) ,  (8b)  

(84  

I eigenvalues, 
h - D  

h 

h - D  
h 

uo 
A, 

A,+AI = -. 

The total potential can be written as 

$(x,y) = CcoshKOyeiKoz ( I y l  c b), (9a) 

$(z,y) =~~eiKoZ+KoUo~yIe iKo2 ( I y l  > b), (9b) 
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T T  
U -TI = A ~ + A , - ( K , ~ )  U,  = 2 ( I - - & ) ,  
A1 

h - D  
X ,  = (KO b )  A, = KO b tanh KO b,  

1 
A, cosh KO b 

c=- uo 

Notice that the inner solution (9) is always bounded (A, > 0), and it depends on 
U,. This value will be determined by matching with the outer solution. I t  is easy to 
see also that $(z, y )  = 0 if Uo = 0. 

Ursell (1968) specifies that $,(y)+K,  U ,  1 y 1 when I y 1 +a. From (8b) it follows 
that A, = (K,b) U,, and from (8c) (see ( lob) )  that 

( 1  -XI) U ,  = A, A,. ( 1 1 )  

Ursell’s solution does not exist for a KO = K* such that 

Si,(K*) = 1 ,  ( 1 2 4  

h or, in this case (see ( lob) ) ,  
K*b tanh K*b = - 

h - D ‘  

Equation (12b) has one and only one solution K*b for each choice of h / ( h - D ) .  The 
root K* of (12a) is here called ‘Ursell’s frequency’. 

A neat way to interpret the meaning of such K* is provided by (9b):  $(z, y )  is 
written there as the sum of an incident wave, with amplitude XI, and the diffracted 
wave KO U, 1 y I eiKox. Since $(x, y) satisfies the homogeneous boundary condition at 
the body surface, the diffracted potential is excited by the incident wave. The 
problem is said to be homogeneous when the excitation is zero (XI = 0). From (10a) 
and (12a) it follows that at  Ursell’s frequency the homogeneous cross-section problem 
(XI = 0) has a non-trivial solution (17, arbitrary). 

The situation here is similar to the acoustic-wave-guide problem, Ursell’s frequency 
playing the role of the cut-off frequencies. But if this is so i t  should be suspected that 
a change of the asymptotic behaviour of q5, when x-tco, takes place. This will be 
demonstrated later in this work. Next the cross-section problem for the case where 
the water depth is arbitrary will be briefly addressed. 

2.2.  Arbitrary water depth 
If the water is not shallow the solution must be obtained numerically. One convenient 
numerical algorithm is provided by the hybrid-element method, first introduced by 
Chen & Mei (1974). The basic idea is the following. In the uniform region I y I > 6 the 
solution is expressed as a series with unknown coefficients. In the region 1 y I < b, 
where the scatterer is placed, the differential operator of (2) is transformed to its weak 
form. Imposing continuity of pressure and velocity along I y I = 6, a weak equation 
is obtained, defined only in the finite region I y I < 6. The exact solution of this weak 
equation is then approximated, via finite elements in a standard way. 

The series expansion associated with (Za-c), is given by 

co 
$ ‘ ( y , ~ )  = [ A $ + K ,  U $ ( l g l - 6 ) ]  coshK,(z+h)+ A$fn(z)e-jn(lgl-a, (13) 

n-1 
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/3, = (P, + GP, where 

Expression (13) is valid for an arbitrarily large (although always finite) water depth. 
The important point to be emphasized is that the arbitrary-water-depth case can 

be cast in a form identical with the shallow-water limit. In  particular, it  can be shown 
(see Aranha (1982)) that 

(i) Uof and A$ are related by an expression like (5),  where the matrix is again 
positive-dehite and V$ = -A, = - (a, +a,) ; 

(ii) $(x, y, z )  = 0 if U$ = 0, or, in other words, $(x, y, z) + O  if KO U$ -+O, 
(iii) as in (8c )  and (lOa, b), 

I UO A,+A -- 
I -  A,’ 

- I  & = A , + A o - ( K o 6 ) U o  =-(l-A,), UO 
A1 

x, = (K,6)AA,, 

where A, = A$ and U, = U$,  once it is assumed that the cross-section is symmetric; 
(iv) Ursell’s solution does not exist for a KO = K* such that 

Si,(K*) = 1. (16) 
At these Ursell frequencies, the homogeneous cross-section problem (XI = 0) has a 
non-trivial solution. 

The only difference between the general case and the shallow-water limit is that 
now the exact values of a,, a, and V$ are unknown and must be computed 
numerically. The consequence of this is that here the existence and uniqueness of the 
solution for (16) is not granted, as i t  has been before (see (12b)). However, an upper 
bound for A, = X,(K,) can be derived, and this helps to visualize the behaviour of 
Ursell’s frequencies. In fact it can be shown that if the water is not shallow 
(K,h > 0.17587) then (see equations (8)-(22) of Aranha 1982) 

where 2b is the beam, B is the contour-line of the cross-section and n, the z-component 
of the normal It (see figure 1) .  This result has been deduced under the assumption 
that the projection of the cross-section in the free surface coincides with the waterline. 
In this case the integral I(K,; B), which depends only on the wavenumber and 
geometry of the cross-section, is always positive. 

To get a clear picture, the upper bound above will be specialized for some common 
sections. 

(a)  Rectangular box 

In  this case 
&(KO) < 2(K, b)e e-2Ka D ,  

and then (16) has no solution if y = D/2b > 0.2601. Also the number of roots must 
be even when D > 0. If (K?, K:, . . . , K:,) are these solutions then K,* b > t d 2  NN 0.707, 
since &KO) < 2(K,  b),. 
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FIQURE 2. Ursell’s frequency. 0-0, &(Kob); --- ,f(Kob) = upper bound. 

The separation between the roots increases with b/D, and numerical evidence 
indicates that there should exist only one root if D = 0 (see Yue & Mei 1981). 
Figure 2 displays some numerically computed values of &(KO), and they confirm 
the conclusions quoted above. 

( b )  Half-immersed circle 

NowI(Ko; B) = 1-+n(1,(2Kob)-LL,(2K0b)), whereIl( )andLl( )are themodified 
Bessel and Struve functions (see Abramowitz t Stegun 1964). It can easily be seen 
that f(Kob) = 2(K0b)2[~n(11(2K0b)-L,(2K0b))] is smaller than 1 for any Kob. 
Equation (16) has no roots in this case. 

From these results the following conclusions can be reached. 
(i) If Ursell’s frequency exists then (in general) i t  is not unique. 
(ii) Ursell’s frequency should not exist if the body has a ‘large ’ draught. Indeed, for 

a rectangular box this happens if y = D/26 > 0.2601, and for a half-immersed circle 
(y = 0.5) there is no Ursell frequency. 

(iii) If the water is not shallow (Koh > 0.17587) all these results do not depend on 
the water depth, since they have been derived from inequality (17). 

Suppose that (Kf, K,*, . . . , Kzn) are the Ursell frequencies and let 
n 

A = u {K$-l < KO < q. 
1-1 

To keep the notation short, a value KO will be said to be above (below) the Ursell 
frequency if KO E A (or KO 4 A). 

In any event, whether Ursell’s frequencies exist or not, it follows from (13), (15) 
and (1) that 

+(z,y,z) - [ZI+Ko UoIyI] coshKo(z+h) eiKoz as lyl+co. (18) 

Expression (18) will be used for matching with the outer solution. Notice here that 
it agrees with (96) when the water is shallow, with the error factor 1 +O(Ko h)2. 
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3. Parabolic (outer) approximation and cut-off frequency 

can be approximated, far from the body, as a modulation of the head sea. That is, 
If the wave is short (KO b = O(1)) and the body is slender (L/b % 1) the total wave 

d(z, y,z) - P ( z ,  y)A, eiKos coshK,(z+h). (19) 

The modulation P(z, y) satisfies a parabolic equation similar to the heat equation. 
The appropriate solution must satisfy some initial and boundary conditions. Details 
can be found in Mei & Tuck (1980) and Haren t Mei (1981). In  these papers it is shown 
that P(z, y) is given by 

P(x,y)  = 1-- 2( l + i  nK,)t Jos;l:T$exp[$$j], - 

where the unknown V(z )  must be determined by matching with the inner solution. 
Placing (20) into (19) and taking the limit as Iy I+O, the following asymptotic 
approximation of the parabolic (outer) solution is obtained : 

+(z,y,z) - [(l-I(V))+V(z)IyI]A,~oshK,(z+h)e~~~~ as Iyl+O, (21) 

where 

The outer expansion (18) of the inner solution must be matched with the inner 
expansion (21) of the outer solution. From this matching i t  follows that V(z )  must 
satisfy the Abel integral equation 

with 

KO u, = A, V(z).  (23 a )  
In  the shallow-water limit the solution can be written as (see (7), (9a), (1Oc)) 

Equation (24) shows that the behaviour of $(z, y) as z+m depends solely on V(z) .  
The same is true for arbitrary water depth, since #(z, y, z)+O if KO U, = A, V(z)+O. 

When the cross-section is constant, u is also, and the solution V(z )  can be obtained 
explicitly. In  fact (see Mei & Tuck 1980) 

where erf(z) is the error function. The asymptotic behaviour of (25) is given by (see 
Abramowitz & Stegun 1964) 

when z /K ,  u2+m. Equation (26) shows that the behaviour of V ( z )  as z+oo depends 
on the sign of u. From (23a) and (16) u changes sign at Ursell’s frequency. If u > 0 
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(frequency below Ursell’s frequency) V(x) (and so $(x, y, z) also) tends to zero with 
(Koz)t as x-tco. This is the result obtained by Faltinsen (1971), Ursell (1977) and 
Haren & Mei (1981). If a < 0 (frequency above the Ursell frequency) the first term 
in (26) dominatesfor large x. It is clear then that $(x, y, z) remains oscillatory as x + m .  
So Ursell’s frequency works as if i t  were the classical cut-off frequency in a waveguide. 

It remains to understand what happens at a = 0. From (26) it is clear that V(x) 
is bounded when u+O from above, with the exception of the integrable singularity 
at x = 0. When u+O from below, there is an extra term, 

As I u I + O ,  I G(x, a) I +GO, but the phase is rapidly oscillatory. There is no doubt that 
the solution of the integral equation (22) is unbounded as u+O-, but the same 
conclusion cannot be made about $(x, y, z). In fact the rapidly oscillatory nature of 
the phase makes necessary to interpret this limit in the generalized sense. Equation 
(24), for shallow water, provides an easy way to show this. If K,Ax < 1 let 
$(x, y;  - 1  cr 1; Ax) be the average value of $(x, y; - 1  crI ) in the interval x-Ax < <- 
x+ Ax. For x > 0 and using (26), the following equality is obtained for I a 1 < 1 : 

$(w; -lal; Ax) 
1 x+Ax 

=-- 2Ax JX-,, $ ( c 7  y ; - I a I ) d6 

- A  I 
Ko(h-D)  sinhKob 

l - i  KO 

Therefore 
h coshK,yl-i KO 

-- eiKox[ 1 + O(Ko Ax)]. 
A’ Ko(h - D )  sinh KO b d (KO x)t $(x,y,O-; Ax) - 

Notice that $(x, y, 0-, Ax) = $(x, y, O +  ; Ax). The limit, as I a 1 + O ,  in the sense of 

generalized functions, assumes that $(x, y;  CT = 0) = lim $(x, y;  0, Ax), or 
Ax+O 

h coshKoyl-i 1 eiK,x -- $(z, y ; a = 0) = A,  - 
h - D  sinhKob K? (Kox)i 

This limit can be physically interpreted in the following way. Since the pressure 
p ( x ,  y; - 1  u I ), is proportional to the potential, let p(z ,  y;  - 1  CT 1 ) = $(x, y; - 1  u I ). 
The force acting in a small neighbourhood around the point (x, y) is given by 

F ( ~ , y ; - l ~ l ; A x )  = $ ( ~ , y ;  -I~I;Ax)(Ax)~[~+O(K~AZ)]. 
As Ia(+O, 

F(x, y;  - 1  CT 1 ;  Ax)+F(x,y; 0; Ax) = $ ( ~ , y ;  0; AX) 
By definition, pressure is the limit of force over area. So 

[ l  +O(K0Ax)]. 

p(x, y; a = 0) = lim (Ax)-2 F(x, y;  0 ;  Ax), 
Ax+O 

and (27) holds, since p(x, y; a = 0) = $(x, y;  u = 0). 
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It turns out that the transition at the cut-off frequency (Ursell’s frequency) is 
smooth. The head-sea problem is similar to the acoustic-duct problem when the 
pressure field is imposed as a boundary condition, since there is no resonance at this 
frequency. 

4. Conclusion 
The singularity at  Ursell’s frequency has been interpreted. It has been shown, as 

in the classical waveguide problem, that the existence of characteristic frequencies 
for which the homogeneous cross-section problem has a non-trivial solution, makes 
its presence felt in the asymptotic behaviour of the wave as z+m. For shallow water 
there exists only one Ursell frequency, but for finite depth there exist an even number 
of such frequencies if the draught is non-zero. For frequencies below the first Ursell 
frequency the wave decays with x, but, if the frequency is above the first and below 
the second, the wave remains oscillatory as z+m. Each time an Ursell frequency 
is crossed, a change of behaviour like this must happen. The results obtained for 
the rectangular box indicate that if the draught is large Ursell’s frequency should 
not exist, as it does not for a half-immersed circle. In  other words, a head sea is in 
this case always refracted away by a long ship, a result in accordance with Ursell 
(1977). 

The interpretation of the limit (2/a) exp (iz/2K0 r2) in the generalized sense, and 
the physical meaning of such a limit, poses a question about the resonance found by 
Mei & Tuck (1980) in another problem. 
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